Intrinsically water-stable electrospun threedimensionalultrafine fibrous soy protein scaffoldsfor soft tissue engineering using adipose derivedmesenchymal stem cells
نویسندگان
چکیده
Intrinsically water-stable electrospun threedimensional ultrafine fibrous soy protein scaffolds for soft tissue engineering using adipose derived mesenchymal stem cells" (2014). Faculty Publications-Textiles, Merchandising and Fashion Design. Paper 35. Soy protein, the plant protein from soybean, was electrospun into intrinsically water-stable scaffolds with large volume and ultrafine fibers oriented randomly and evenly in three dimensions (3D) to simulate native extracellular matrices of soft tissues. The 3D ultrafine fibrous scaffolds from proteins could be favored in soft tissue engineering. However, protein-based biomaterials usually suffered from poor water stability, while the highly crosslinked proteins which had water stability were usually difficult to be fabricated into fibers. Soy protein was a typical protein with intrinsic water stability, attributed to its 1.2% cysteine content. Soy protein has been developed into 3D non-fibrous structures, coarse fibers and films for tissue engineering applications, but not ultrafine fibrous structures. In this research, the disulfide crosslinks in soy protein were cleaved to facilitate its dissolution in an aqueous solvent system. The obtained solution was electrospun into bulky scaffolds composed of ultrafine fibers oriented randomly in three dimensions. Without external crosslinking, the fibrous soy protein scaffolds demonstrated long-term water stability, and maintained their fibrous structures after incubated in PBS for up to 28 days. In vitro study showed that the 3D soy protein scaffolds well supported uniform distribution and adipogenic differentiation of adipose derived mesenchymal stem cells. In summary, the 3D ultrafine fibrous soy protein structures could be good candidates as scaffolds in soft tissue engineering.
منابع مشابه
Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملReview Paper: Adipose Tissue, Adipocyte Differentiation, and Variety of Stem Cells in Tissue Engineering and Regeneration
Human adipose tissue represents an abundant, practical and appealing source of donor tissue for autologous cell replacement. Recent findings have shown that stem cells within the stromalvascular fraction of adipose tissue display a multilineage developmental potential. Adipose tissue-derived stem cells can be differentiated towards adipogenic, osteogenic, chondrogenic,myogenic and neurogenic li...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملElectrospun Plant Protein Scaffolds with Fibers Oriented Randomly and Evenly in Three-Dimensions for Soft Tissue Engineering Applications
In this work, electrospinnable and water stable soyprotein was extracted by using a reducing agent in mild alkaline condition, and novel 3D zein and 3D pure soyprotein electrospun scaffolds with three-dimensionally and randomly oriented fibers and large interconnected pores were successfully fabricated by reducing surface resistivity of materials. This unique structure is different from most el...
متن کاملGenipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold
Objective(s): To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO) nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers. Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nano...
متن کامل